o

http://www.diva-portal.org

This is the published version of a paper presented at The Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16).

Citation for the original published paper:

Petrosyan, V., Proutiere, A. (2016)
Viral Clustering: A Robust Method to Extract Structures in Heterogeneous Datasets.

In:
N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181109

Viral Clustering: A Robust Method to Extract Structures
in Heterogeneous Datasets

Vahan Petrosyan and Alexandre Proutiere
Royal Institute of Technology (KTH)
{vahanp, alepro} @kth.se

Abstract

Cluster validation constitutes one of the most challeng-
ing problems in unsupervised cluster analysis. For ex-
ample, identifying the true number of clusters present in
a dataset has been investigated for decades, and is still
puzzling researchers today. The difficulty stems from
the high variety of the dataset characteristics. Some
datasets exhibit a strong structure with a few well-
separated and normally distributed clusters, but most
often real-world datasets contain possibly many over-
lapping non-gaussian clusters with heterogeneous vari-
ances and shapes. This calls for the design of robust
clustering algorithms that could adapt to the structure of
the data and in particular accurately guess the true num-
ber of clusters. They have recently been interesting at-
tempts to design such algorithms, e.g. based on involved
non-parametric statistical inference techniques. In this
paper, we develop Viral Clustering (VC), a simple algo-
rithm that jointly estimates the number of clusters and
outputs clusters. The VC algorithm relies on two antag-
onist and interacting components. The first component
tends to regroup neighbouring samples together, while
the second component tends to spread samples in var-
ious clusters. This spreading component is performed
using an analogy with the way virus spread over net-
works. We present extensive numerical experiments il-
lustrating the robustness of the VC algorithm, and its
superiority compared to existing algorithms.

Introduction

Clustering is an important technique in data mining and has
many applications in machine learning, pattern recognition,
bioinformatics, etc. For a given dataset X"*? = {x;}";
consisting of n observations of p variables, the main task of
clustering is to divide the data into subgroups such that ‘sim-
ilar’ observations appear in the same subgroup. In most clus-
tering algorithms, the number of subgroups (clusters) should
be specified in advance. In many cases however, the true
number of clusters, denoted by k£* throughout the paper, has
to be guessed. In turn, determining k* is important in clus-
ter analysis, and therefore, has been investigated extensively
over the last few decades.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we propose a novel algorithm, referred to
as VC (Viral Clustering), that jointly addresses the problem
of finding the true number of clusters, as well as identify-
ing the clusters. The VC algorithm relies on two antagonist
and interacting components. In the first component, Spread
Virus, the clusters spread as a virus in a network, which
favours the formation of large clusters, and in turn tends
to remove clusters of small sizes. The second component,
Suppress Virus, acts as k-mean algorithm, and tends to stop
the epidemic spreading of clusters of the first component.
By design, the VC algorithm exhibits a very high robust-
ness, and performs well in datasets with possibly many over-
lapping non-gaussian clusters with heterogeneous variances
and shapes. We present extensive numerical experiments il-
lustrating the robustness of the VC algorithm, and its supe-
riority compared to existing algorithms. VC accurately esti-
mates the true number of clusters, and outputs clusters close
to the true clusters.

Related Work

There is a large number of algorithms estimating the true
number of clusters k*. Most of them consist in running sev-
eral instances of an arbitrary algorithm (usually k-means),
with various values of k. The output (i.e., the clusters) of
each instance is then processed and associated with a vali-
dation index that quantifies the quality of the output. k* is
finally obtained by maximizing/minimizing the index over
k. Some researchers have done extensive comparisons of the
various proposed validation indices. One of the earliest stud-
ies was carried out by Milligan and Cooper (1985) who pro-
vided an experimental summary of 30 different algorithms.
All experiments were done on artificial datasets and the re-
sults showed that the method based on the index proposed
in Calinski and Harabasz (1974) works best for determining
k*.

Bezdek et al. (1997) compared 23 different cluster valida-
tion indices. They used twelve datasets consisting of either
three or six Gaussian clusters. Summarising the outcomes by
counting the number of correct predictions of true £*, they
found that Bozdogan’s (1993) AIC3 index performs the best.
Hardy (1996) tested seven indices using six algorithms and
six datasets with different structures. They discussed pros
and cons of each method and recommended to use a combi-
nation of several cluster analysis techniques and validation

indices for determining the true number of clusters.

More recently, Arbelaitz et al. (2013) compared 30 differ-
ent validation indices. The experiments in that paper were
performed on both artificial and real-world datasets. Some
of the indices in Arbelaitz et al. (2013) had already been
discussed in Milligan and Cooper (1985). In particular, the
Calinski and Harabasz (1974) index in Milligan and Cooper
performed the third best on artificially generated datasets.
It was only outperformed by Davis-Bouldin index (Davies
and Bouldin 1979) and Silhouette index (Rousseeuw 1987).
Various other papers compare up to ten indices with their
own index (Tibshirani, Walther, and Hastie 2000; Sugar and
James 2003; Kalogeratos and Likas 2012).

Next we describe the intuition behind some of the well-
known and most successful validation indices. Calinski and
Harabasz (1974) proposed the following index:

_ Bi/(k—1)
Wi/(n — k)’

where By and W} denote the inter and intra-cluster sum of
(distance) squares for k clusters. A large index here indi-
cates that the dataset is well clustered, and therefore, £* is
determined by maximizing C Hy, over k.

Hartigan (1975) proposed the following index:

Wi 1) (n—k—1).

k+1
When the data has k* distinct clusters, we expect a small
drop from Wy« to Wy~ 1, and hence, a small value of H R,.
As a crude rule of thumb, Hartigan suggested to determine
k* by finding the minimum number & such that H Ry, < 10.
Rousseeuw (1987) proposed the Silhouette index:

SLk:lzn: bi — a;

n max{a;,b;}’

CHj,

= (

where for the j-th observation, a; is the average distance
to other observations within the same cluster. Similarly, b;
is the average distance to the observations in the cluster the
closest from the j-th observation (except for its own cluster).
In case of well separated data, the difference b; — a; gets
closer to maxz{a;, b;}. Therefore, Rousseeuw suggested to
choose k* as the maximizer of the Silhouette index.

Krzanowski and Lai (1988) introduced the K L index de-
fined as:

DIFF,

DIFFy 4

where DIFFy, = (k — 1)2/”Wk,1 — k2/PWy. For a dataset
with £* clusters, we expect to see a big drop between Wi« _1
and Wy~ and a small drop between Wy~ and Wy« 1. Thus,
one can find £* by maximizing the K L index.

Tibshirani, Walther, and Hastie (2000) proposed the gap
index defined by:

)

KLkzl

B
GAP, = B™'Y _ log(Wy) — log(Wy),
b=1

where each of W} is the within cluster sum of squares gen-
erated from the reference data. As an example, consider the

reference data has n uniformly distributed points in p dimen-
sions, with k centers. It can be shown that Eflog(W;)] =
log(pn/12) — (2/p)log(k) + C when the k centers are
equally spaced. When the data have k separated clusters,
the W), will have a bigger drop from Wj._; in case of clus-
tered data compared to reference data. Therefore, one will
expect to see a higher value for GAP;. However, instead
of maximizing G AP index, Tibshirani, Walther, and Hastie
suggested to choose k£* by minimizing k such that GAP;, >

GAPyy1 — 5,11, where s, = \/(1 + 1/B)sd(W}EB).
A popular parametric method was proposed by Fraley and
Raftery (2002). It finds k£* by fitting Gaussian Mixtures with

EM algorithm and maximizing the BIC index for different
values of k. The BIC index can be calculated as:

BICy, = —2log(Ly) + q - log(n),

where ﬁk is the maximized value of the likelihood function
and ¢ is the number of independent parameters for the esti-
mated model.

An information theoretical approach (the jump index) was
proposed by Sugar and James (2003). This method is based
on distortion rate, a measure of intra-cluster dispersion. The
jump index can be calculated by

JUMPy, = d;¥ —d;?,

where d, = p~! min E[(X —c,)TX71(X —c¢,)] is the av-
C1-Ck

erage Mahalanobis distance per dimension between X and
c; the ¢;’s are the cluster centers and y is a tuning param-
eter (usually y = p/2). In this method, k* is estimated by
maximizing the jump index over k. The authors provided
some theoretical justifications of their method when the data
consist of well-separated Gaussian clusters.

In this paper, we will compare our method with the afore-
mentioned methods. Most of these methods predict k£* well
under specific assumptions on the data. As it turns out, the
proposed Viral Clustering algorithm outperforms existing
methods and predicts the true number of clusters accurately
without making any assumption on the underlying dataset.

Algorithm

In this section, we present Viral Clustering (VC), an algo-
rithm that jointly estimates the number of clusters and out-
puts clusters. VC relies on two interacting components: (i)
Spread Virus, a step where observations are attached to ex-
isting neighbouring clusters in an epidemic fashion; (ii) Sup-
press Virus, a step tending to regroup observations together
as in the traditional k-means algorithm. VC alternates be-
tween these two steps until the cluster assignment remains
roughly unchanged. Next we describe Spread Virus and Sup-
press Virus, and then present the main algorithm. In the al-
gorithm, the current cluster assignments are described by
y € {1,2,--- ,n}™ where y; is the identity of the cluster of
sample x;. This identity can take any value from 1 to n (the
total number of samples) since there are at most n clusters.
Initially, VC starts with n clusters (one cluster per observa-
tion), i.e.,y = {1,2,--- ,n}.

Spread Virus. This step proceeds as follows. We sequen-
tially consider each observation, and potentially modify its
assignment to clusters. We denote by s the set of observa-
tions that have not been considered yet. To select an ob-
servation from s, we choose uniformly at random (in s) an
observation belonging to the smallest cluster in the current
cluster assignment y. Let [= rand_smallest(y, s) denote the
index of this observation. We then select one of the m near-
est neighbours of x;, say x;/, and assign x; to the cluster y;/,
i.e., y; becomes y;;. The pseudo-code of the Spread Virus
step is presented below. D € R™*™ denotes the symmetric
matrix such that Dy, = d(x;,xg) is the distance between
observations X; and x; D; is the [-th line of D, and the func-
tion rand_m(D;) returns the index of one of the m nearest
neighbours of x; chosen uniformly at random.

Algorithm 1: Spread Virus

1 Input:y € {1,2,--- ,n}",m;

2 Initialization: s = {1,2,--- ,n};
3 whiles # () do

4 I < rand_smallest(y, s);

5 s+ s\{l};

6 " < rand-m(Dy) ;

7 Y <y

8 end

9 Output: y;

Suppress Virus. This step simply consists in running one
iteration of the k-mean algorithm starting from the current
assignment y. If there are k clusters in y, we first compute
the k£ centers of the clusters (the center of a cluster is the
empirical average of the observations assigned to this clus-
ter), and then assign each observation to the cluster with
the closest center. The pseudo-code of this step is presented
below. There, the function nb_clusters(y) returns the num-
ber k of clusters in y, the function re_index(y) just rede-
fines (arbitrarily) the indices of the clusters such that for all
le{l,....,n}, yy € {1,...,k}, and finally the function
centers(y) returns the centers i1, . . ., u of the k clusters.

Algorithm 2: Suppress Virus

1 Inputs: y € {1,2,--- ,n}";
2 k < nb_clusters(y), y < re_index(y) ;

3 (p1,..., pr) < centers(y) ;

4 forl=1:ndo

s | oy argmingeqn gy d(xi, py) 5
¢ end

7 Output: y;

Main Algorithm. The VC algorithm combines the Spread
and Suppress Virus steps. Observe that the Spread Virus
step tends regroup overlapping clusters into a single clus-
ter. Indeed, in the area where two clusters overlap, Spread
Virus mimics the competition between two epidemic pro-
cesses, one for each cluster. Since we start modifying the
assignment of observations in the smallest cluster, we give

an advantage to large clusters in this competition. In turn,
in the Spread Virus step, the number of clusters decreases.
On the contrary, the Suppress Virus tends to freeze the var-
ious clusters around their centers, and keeps the number of
clusters unchanged. The Suppress Virus step suppresses the
infected observations around the cluster centers (by infected,
we mean assigned to a cluster whose center is not the clos-
est). The roles of the two steps are illustrated in Figure 1.

Algorithm 3: Viral Clustering

1 Input: X € R"*? [,
2 Initialization: 1 = 0, v = lspr, 0 = 1,10 = n,
Yo ={1,2,--- ,n},u=30,m = |logyn], { = 1.2;
3 whiley; > 1075 do
ki nb,clusters(yi);
// spread or suppress virus

if v > 0 then
‘ i1

vyt « spreadvirus(y’,m);
v—v—1;
else

e ® 9 n R

vyt « Suppress_virus(y);
V4 lspri

12 end

B Ae#{y T £ yiY/n;

14 // update t

15 if ((i(mod)s =1) & (Yi—u < 7;)) then

16 ‘ ti+1 < ti/C;
17 else

18 ‘ ti+1 — t;;

19 end

20 // update 7y
21 if A > ki/ti+1 then

2 | yit1 < v(1+4A)
23 else

24 | Vi1 < vi/2;

25 end

26 14— 1+ 1;

27 end

28 // suppress until convergence to k-means

20 while y~! %y’ do

30 vy < suppress_virus(y');
31 14— 1+ 1;
32 end

33 Output: yi

The proposed VC algorithm alternates between the two
steps, until we do not see significant changes in the cluster
assignment. More precisely, VC proceeds in rounds, and in
each round, [, Spread Virus steps are made and one Sup-
press Virus step. For each point, we select m = [log, 1|
nearest neighbours in order to make the m-nearest neigh-
bours graph connected within each cluster (Brito et al.
1997). The stopping rule is defined through a variable -, up-
dated after each step. The algorithm stops when v becomes
small enough (here 10~5). After each step, v is halved if
the proportion A of observations that changed clusters is
below a threshold, and is multiplied by (1 + A) otherwise.
The threshold depends on the current number of clusters and
a second variable ¢ whose dynamics make sure that ~ ulti-

Spread Virus

+ s + +
i A G
+ +
i + o +
+ 4
& T iyt e 1 = T4+ F
+++¢+ﬂ+@®g ° +++#+#++++<>3 o
T B . SR i T g o
+ oy 0% o @ 4 s % o @
+ + 1 7 © E + s+ T ©
® @
3 i e p i T
+ S A + S .
- Ei i s s 1 = =
EIN + ° EIR + o
+ - Te + . s
e S
e i o 4
+ +

Spread Virus

Suppress Virus

+ s + =
+ ¢t 5] G
+ +
I + i ®
+ +
& + o or o+ 1 iz + 4+e o
+++#+ﬂ++++¢ . +++#+#:@®g o
T TRy = s i R i
+ o e% . @ + e R 0% o @
+ + ++ F A + + ++ F ®
@ @
Ty et il p
+ i e + i o I
e + 1 = +
+3 v + TEE] +
+ + # + ® e
+ o + + + ®
+ o+ + @
4 2 o
+ +

Figure 1: Cluster assignment dynamics under the VC algorithms over three consecutive steps (clusters are defined by the color
or shape). In the first two Spread Virus steps, we tend to eliminate the smallest cluster. The Spread Virus step infects the
neighbour points randomly, the Suppress Virus step removes the infected observations (those that are far from their cluster’s
center). Observations: Sampled from a standard bivariate Gaussian distribution, 100 observations.

mately decreases. ¢ is updated every u steps and when has
increased, in which case, the threshold is increased. The dy-
namics of ¢ depend on the value of the parameter ¢ > 1 (the
multiplicative decrease factor). u and ¢ have little impact on
the outcome of the algorithm, but slightly influence its con-
vergence time. An example of typical dynamics for v, ¢, and
k (the current number of clusters) is presented in Figure 2.

15

—— log(Gamma)
- #of Clusters

10
T
80

log(Gamma)
0
40)
Number of Clusters

-10

-15

0 100 200 300 400 500
Iterations

Figure 2: Evolution over time under the VC algorithm of ~
(’Gamma’ in the plot), t, and k. Observations: sampled from
20 t-distributed clusters. The values of ¢ are the numbers
presented near the red curve.

After v becomes small enough, the VC algorithm finishes
by running the Suppress Virus steps only, until the clusters
are not changing anymore. This last step makes sure the al-
gorithm to converge to one of the assignments obtained after
convergence of the k-means algorithm. The pseudo-code of
VC is provided in Algorithm 3.

Finally, we give some intuition for the VC algorithm.
When the data is well-separated, Spread Virus is not capa-
ble to spread the virus from one cluster to another. There-
fore, the virus spreads within the clusters only, and the algo-
rithm does not suffer from the ‘bad’ initialization problem.
When there is an overlap between clusters, the probability of

spreading virus between clusters is much less than spread-
ing within clusters. As a result, we can still predict £* while
avoiding the issue of ‘bad’ initialization.

Numerical Experiments
Datasets

A. For our experiments, we used ten artificially generated
datasets from Tibshirani, Walther, and Hastie (2000) and
Sugar and James (2003) (five datasets from each paper). Re-
fer to these papers for a detailed description of the datasets.

B. We also created five other datasets with various properties
as described in Table 1.

Dataset Exp. T Beta Mixture Gaussian
Changing cluster size v v v v v
Changing cluster gaps v v v v

Changing variances v v v

Correlated variables v
Changing distributions v

High dimensional v
Outliers v v v

Table 1: Properties of five artificial datasets.

All five datasets have 20 clusters and in each cluster there
are from 40 to 80 observations, drawn randomly according
the different types of distributions, e.g., Gaussian, Exponen-
tial, Beta, Student’s t distributions. A random realization
of the first four datasets are presented in Figure 3. There,
observations are 2D vectors, and the clusters are centered
near (ci,cy) where ¢; € {ai,...,a5} = {0,3,6,9,18}
and ¢z € {by,...,bs} = {0,3,6,15}. Now an observation
X = (x1, z2) from cluster j € {1,...20} is drawn from the
following distributions:

1. First dataset (Exponential): Let A be selected uniformly
at random in {1, 3} (we use the same A for observations in
the same cluster):

x1 ~ Exp(A) + 14 @145 (mod)s
w3 ~ Exp(N) + 1 4 bi4j(mod)a-

2. Second dataset (T):

z1 ~ 0.6 - t(df = 3) + 15+ A1+5(mod)5>
w3 ~ 0.6 - t(df = 3) + 1.5+ b14j(mod)a-

3. Third dataset (Beta): Each parameter a1, ag, 81, B2 are
chosen uniformly at random in {2, 3,4, 5},

Tq ~ 3.75Beta(a1,ﬂ1) + Q14 5(mod)5s
xy ~ 3.75Beta(as, B2) + b1y j(mod)a-

4. Fourth dataset (Mixture): for each cluster, we randomly
choose the distribution among the 3 distributions described
above and generate observations accordingly.

5. Fifth dataset (Gaussian): observations are drawn from
50-dimensional multivariate normal distributions with co-
variance matrix of 1 in the diagonal and 0.5 elsewhere; the
cluster centers are at {3,6,9,---,60} in each dimension.

Exponential Clusters Student-t Clusters

20

VA 4
o+ & ® N
[LERE ol
=] Q4 -
= - e -
odo® o+ 0 + +
S .
[te} e v T, g%u o
Qi@o o FE F oy g ° ng“’
15 20 0 5 10 15 20
Beta Clusters Mixed Clusters
1 o | B N
. FrLy | o ElE ¥
o | B P e o & e e . &
—
o
—
n
o4

Figure 3: Random realization of the first four datasets. Clus-
ters are defined by the color and shape combinations.

C. We finally tested our algorithm on five real world datasets,
collected from UCI machine learning repository (Lichman
2013). These datasets include: iris (n = 150,p = 4,k* =
3), breast cancer (n = 683,p = 9,k* = 2), multiple fea-
tures Furie coefficients (n = 2000, p = 76, k* = 10), wine
(n = 178,p = 13,k* = 3), ruspini (n = 75,p = 2,k* =
4). Refer to UCI machine learning repository for more infor-
mation about the datasets.

Predicting the true number %* of clusters

We evaluate here the accuracy of the index-based prediction
methods mentioned in the related work section. These meth-
ods rely on a particular underlying clustering algorithm. In
our experiments, we used the k-means algorithm, except for
the BIC index where the EM algorithm (fitting mixture of
Gaussians) was used.

A. We have done extensive experiments on the 10 datasets
used in Tibshirani, Walther, and Hastie (2000) and Sugar
and James (2003). We used 50 random realizations for each
dataset and summarized our findings by calculating how
many times the various algorithms (see the Related Work

section) predicted £* correctly, see Table 2. For the VC al-
gorithm, we have chosen [, = 1 whenp = 10 and l,p, = 3
when p = 2, or 3. Only in Gap5, we used [, = 20.

Data, k™, p KL CH HR SL Gap BIC Jump VC

Gapl, 1, 10 0 0 0 0 50 50 0 50
Gap2, 3,2 36 50 50 45 43 50 49 48
Gap3,4,3 22 28 29 20 19 50 50 49
Gap4, 4, 10 31 23 27 22 28 50 48 47
Gaps, 2,3 50 0 0 50 50 50 0 50

Jumpl, 5,2 5 46 0 13 1 48 45 39
Jump2, 5, 10 25 0 2 0 34 50 42 47
Jump3, 4,2 41 50 50 50 7 50 50 48
Jump4, 4,2 9 50 50 21 25 46 49 47
Jumps, 4, 2 23 30 47 39 11 11 42 48

Table 2: Number of times k* is correctly predicted (out of
50 experiments) by different validation indices. All datasets
have between 100 and 200 observations.

BIC, Jump and VC perform well for these datasets. How-
ever, the BIC algorithm is based on Gaussian mixture mod-
els and works well when clusters are normally distributed
and not high-dimensional. For example, it has poor perfor-
mance in the Jump5 dataset where clusters have exponential
distribution. The Jump algorithm tends to overestimate the
number of clusters when a large prediction range is chosen
(in these experiments we chose k£* from the prediction range
one to ten). Note that in VC there is no need to specify the
prediction range of k.

‘ Exp T Beta Mixture Gaussian
KL 4 1 0 0 1
CH 0 2 4 3 0
HR 0 0 0 0 0
SL 3 0 0 0 0
Gap 0 0 0 0 0
BIC 0 3 15 7 0
Jump 4 7 10 5 0
vC 50 47 33 32 50
bk £or prtor pr Lok Hi o) pg oy
KL 20.9+11 16+12.6 18.9+11.8 17.8+£12.6 237452
CH 315453 25.5+4.5 249+3.8 26.2+6.3 24425
HR 49452 3.240.6 39425 55459 3.6£1.5
SL 192474 3.6+£2.3 5.7£45 9.9£5.8 240
Gap 2.1+£15 1.6+0.9 1.9+1.1 1.9+1.2 24+1.7
BIC 233+£1.5 22.4+£5.7 21.3+23 20.6£2.6 1+0
Jump | 26.445.6 21.6+1.9 20.3+4.2 23.7+6.6 39.240.9
vC 2040 19.94£0.1 19.7£0.6 19.7£0.7 2040

Table 3: Top: Number of times k* is correctly predicted (out
of 50 experiments) by different validation indices. Bottom:
Mean and standard deviation of the predictions.

B. The experimental results for the five artificial datasets are
shown in Table 3. Again, we randomly created 50 datasets
and presented the number of correct predictions. In addition,
we provide the mean and the standard deviation of these
50 predictions. Here, the performance of VC is outstand-
ing. While all other algorithms perform really poorly, VC
correctly predicted k* most of the time, in all five cases.

Even when the VC prediction was wrong, it was actually
very close to the true number of clusters, k* = 20 (check
the ui + oy in Table 3).

C. We have similar performance results for the real-world
datasets. Table 4 shows the predicted number of clusters for
different validation indices. VC did not correctly predict £*
only in multiple features Furie coefficients dataset, but its
prediction was at least as good as its competitors. For all
real world and five artificially generated datasets we used
lopr = 3.

Data KL CH HR SL Gap BIC Jump VC k™
Cancer 2 2 3 2 6 7 10 2 2

Iris 4 3 3 2 3 2 8 3

Furie 11 2 9 2 7 20 20 11 10
Ruspini 4 4 4 4 4 5 4 4 4

Wine 10 3 3 3 3 8 10 3 3

Table 4: Number of clusters predicted by validation indices
for real-world datasets. The last column presents the true
number of clusters.

Accuracy of various clustering algorithms

We compared the accuracy of VC with 4 well-known algo-
rithms, namely, DP-means (Kulis and Jordan 2012), Gaus-
sian Mixture Models (GMM) (Fraley and Raftery 2002),
k-means with initialization based on Hartigan and Wong
(1979), and Spectral Clustering (Ng, Jordan, and Weiss
2001). Except for Kulis and Jordan, these algorithms need
to specify the number of clusters in advance. So, for the five
artificial datasets, we run our experiments with parameter
k = 20, the true number of clusters. For Kulis and Jordan,
k is controlled by parameter A\ and therefore, we run this
algorithm with A such that it provides 20 clusters.

We used two popular metrics to measure the accuracy of
each clustering algorithms. The first method, Adjusted Rand
(AR) Index (Hubert and Arabie 1985), is based on the con-
fusion matrix that compares the clusters identified by the al-
gorithm and the true clusters. The Variation of information
(Vi), (Meilda 2007) is based on the information theoretical
notions of entropy and mutual information.

We tested the accuracy of all five artificially generated
datasets using both comparison metrics. For each dataset, we
simulated 100 random realiztions and presented the boxplots
of accuracies in Figure 4. All four competing algorithms suf-
fer from bad initialization. In addition, GMM does not per-
form well due to non-gaussian clusters (first four datasets)
and estimating well the 50-dimensional covariance matrix
(fifth dataset). For all 5 datasets, VC outperforms the other
clustering algorithms. In some cases, even the lower quan-
tile of VC accuracy is still higher than the upper quantile of
its competitiors.

Conclusion

We proposed a novel algorithm, VC, that determines the
number of clusters and performs clustering. Compared to
other k-means based cluster validation methods, VC does
not require multiple initializations. VC does not require to

20 Exponential Clusters 20 Exponential Clusters

=)

AR Index
S
®

S

DP-means GMM K-means Spectral Viral DP-means GMM K-means Spectral Viral

20T Clusters 20 T Clusters

AR Index
S

S
)

DP-means GMM K-means Spectral Viral DP-means GMM K-means Spectral Viral

20 Beta Clusters 20 Beta Clusters

AR Index

o

0.6

DP-means GMM K-means Spectral Viral DP-mean: A K-means Spectral Viral

20 Mixture Clusters

20 Mixture Clusters

AR Index
o o
.

= 0.2
DP-means GMM K-means Spectral ~ Viral DP-means GMM K-means Spectral ~ Viral

20 Gaussian Clusters 20 Gaussian Clusters

AR Index
)

_ Vi Index

o S

o
3

DP-means GMM K-means Spectral Viral VM K-means Spectral Viral

Figure 4: Accuracy of the various clustering algorithms for
the artificial datasets (100 realizations for each dataset). Left
column: Adjusted Rand Index (the higher, the better) and
right column: Variation of Information Index (the lower, the
better).

run k-means for different values of k. We have shown,
through extensive numerical experiments, that VC is robust
and outperforms existing algorithms both when estimating
the true number of clusters, and when predicting clusters. In
future work, we shall investigate how to automatically and
optimally tune the main parameter [y, of the VC algorithm,
and also plan to derive theoretical guarantees for its perfor-
mance. Finally, it is worth searching for ways to improve the
stopping criterion of the algorithm, and hence to increase its
convergence rate.

References

Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J. M.; and
Perona, I. 2013. An extensive comparative study of cluster
validity indices. Pattern Recognition 46(1):243-256.

Bezdek, J. C.; Li, W. Q.; Attikiouzel, Y.; and Windham, M.
1997. A geometric approach to cluster validity for normal
mixtures. Soft Computing 1(4):166—179.

Bozdogan, H. 1993. Choosing the number of component
clusters in the mixture-model using a new informational
complexity criterion of the inverse-fisher information ma-
trix. In Information and Classification, Studies in Classifica-
tion, Data Analysis and Knowledge Organization. Springer
Berlin Heidelberg. 40-54.

Brito, M.; Chvez, E.; Quiroz, A.; and Yukich, J. 1997. Con-
nectivity of the mutual k-nearest-neighbor graph in cluster-
ing and outlier detection. Statistics and Probability Letters
35(1):33 —42.

Calinski, T., and Harabasz, J. 1974. A dendrite method for
cluster analysis. Communications in Statistics 3(1):1-27.

Davies, D. L., and Bouldin, D. W. 1979. A cluster separa-
tion measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1(2):224-227.

Fraley, C., and Raftery, A. E. 2002. Model-based clustering,
discriminant analysis, and density estimation. Journal of the
American Statistical Association 97(458):611-631.

Hardy, A. 1996. On the number of clusters. Computational
Statistics and Data Analysis 23(1):83-96.

Hartigan, J. A., and Wong, M. A. 1979. A k-means cluster-
ing algorithm. Applied Statistics 28(1):100-108.

Hartigan, J. A. 1975. Clustering Algorithms. New York,
NY, USA: John Wiley & Sons, Inc.

Hubert, L., and Arabie, P. 1985. Comparing partitions. Jour-
nal of Classification 193-218.

Kalogeratos, A., and Likas, A. 2012. Dip-means: an incre-
mental clustering method for estimating the number of clus-
ters. Advances in Neural Information Processing Systems
(NIPS) 2402-2410.

Krzanowski, W. J., and Lai, Y. T. 1988. A criterion for
determining the number of groups in a data set using sum-
of-squares clustering. Biometrics 44:23-34.

Kulis, B., and Jordan, M. I. 2012. Revisiting k-means:
New algorithms via bayesian nonparametrics. Proceedings
of the 29th International Conference on Machine Learning
(ICML) 513-520.

Lichman, M. 2013. UCI machine learning repository.

Meila, M. 2007. Comparing partitions. Journal of Multi-
variate Analysis 98(5):873-895.

Milligan, G., and Cooper, M. 1985. An examination of
procedures for determining the number of clusters in a data
set. Psychometrika 50(2):159-179.

Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2001. On spectral
clustering: Analysis and an algorithm. Advances in Neural
Information Processing Systems (NIPS) 849-856.

Rousseeuw, P. J. 1987. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics 20:53-65.

Sugar, C. A., and James, G. M. 2003. Finding the num-
ber of clusters in a dataset: An information-theoretic ap-
proach. Journal of the American Statistical Association
98(463):750-763.

Tibshirani, R.; Walther, G.; and Hastie, T. 2000. Estimat-
ing the number of clusters in a dataset via the gap statistic.
Journal of the Royal Statistical Society 63(2):411-423.

